Mapping the AVSVideo Decoder on a Heterogeneous Dual-Core SIMD 1
Processor

Nikolaos Bellas, 1 oannis K atsavounidis, Maria Koziri, Dimitris Zacharis
University of Thessaly
Volos, Greece
nbellas@uth.gr

1. Introduction

In the last few years, we have seen the emergdrecaumber
of video standards for applications spanning froireless low-
rate, to high definition broadcast video. Thes¢esys have been
implemented with a variety of single core or muabre
technologies from general purpose processors (GRP$xed
ASICs.

This paper describes the porting of the AVS (Autfideo
Standard) [1] video decoder to Tensilica’s Diam@38BVDO
dual core [2], a heterogeneous dual core procedgsimh consists
of two cores with video specific instruction extems. The AVS
was drafted by the A/V work group of China to reglalder and
royalty-burdened standards such as MPEG-2 and Hriz6dly in
consumer applications. We start from an
implementation of the AVS decoder, OpenAVS [3], ethtargets
a general processor platform (GPP), and we gradtralhsform
the code to enable a dual core implementation enCiiamond
388VDO core. Our aim is to achieve real time, 2§ firogressive
D1 resolution (720x576) AVS video decoding.

The Diamond family of processors includes precarfg
versions of the 32-bit Xtensa configurable architex optimized
for video encoding and decoding. Diamond uses #ipalaility of
the Xtensa architecture to configure a processoe by adding
extra application-specific instructions. Its enhathinstruction set
supports all popular video codecs such as MPEG:264] VC-1
(all in Main Profile) for performance up to D1 région, i.e.
720x576x25 (PAL) or 720x480x30 (NTSC) pixels/securO
contribution is to use the Diamond toolset (IDEpss-compiler,
functional and cycle-accurate simulators, debugygeport a new
video standard to the architecture based on ISAensitns
tailored for older video standards.

As shown in Fig. 1, Diamond 388VDO is a heterogesatual
core processor which consists of two Xtensa corigh wideo
specific instruction extensions. The two Xtensaesdn 388VDO
are referred to as Stream processor and Pixel ggoceThe main
task of the Stream processor is to parse and dettwd@ideo
bitstream. The Pixel processor performs most oftteavy duty
computations of video decoding using SIMD instroesi (called
Tensilica Extension Instructions, TIEs). It is udedaccelerate
motion compensation (including quarter pixel int#gtion and
reconstruction), intra prediction, inverse quartta
(optionally), inverse transform and the deblockifiter. Both
these processors have tightly coupled instructimh data SRAM
memories that are used to reduce memory accesscyasnd
increase bandwidth.

Data transfers between the local SRAMs of the teres and
between the SRAMs and main memory is accomplishiga &
multichannel DMA engine which runs asynchronouglythe
execution cores. Any of the two cores can set upiaitiate a 2D
DMA transaction by describing, among other thinte size of
the memory access patterns, source and destiratinesses, and
the priority schemes between channels.

The challenge of mapping a new video decoder irubiftore
engine like the 388VDO is to detect and extracafpalism at all
levels of granularity, especially at the higherelev

2. AVSVideo Standard Optimization

To give an indication of the relative complexitytbfe various
modules, we profiled the OpenAVS code in a baseKtensa
RISC processor with perfect (zero-wait) memory gsam AVS
input bitstream compressed at approximately 4 Mbgg. 2
shows that Motion Compensation (MC) contributed adtr2/3 of
the total execution time, whereas the second numspatationally
complex function is Deblocking filter (DB) at onl$2.9%.
According to the profiling, the baseline processdt have to be
clocked at 1.73 GHz to meet a 25 frames/sec pedoom

open sourcerequirement under the perfect memory scenario.

Our optimization strategy focuses on the most esjven
functions of the AVS decoder such as motion comgigors and
deblocking filter. We describe a sequence of trogmizations
steps that improve the performance of the videmdierc from
1.73 GHz down to 359 MHz (shown in Table I).

Softwar e Optimizations
The first step is to re-write parts of the codeinprove the
memory locality of the data accesses and minimizerteed to
access data from the main memory.
For example, the following OpenAVS code includes twain
loops to process a frame as shown below:
for (MbIndex = 0; Mblndex < no_MBs; < MbIndex++) {
ParseOneMacroblock; // Parsing, VLD
McldctRecOneMacroblock; // Inverse transform, MC
}
for (MbIndex = 0; Mblndex < no_MBs; < MbIndex++) {
DeblockOneMacroblock // Deblocking

}

The problem with this reference OpenAVS code ig thsing
two separate loops causes the whole frame to tepithe main
memory: the output frame of the MC has to be stooettie main
memory, and then retrieved back by the Deblockrfilt

We introduce a data structure that stores the tpived rows
above and the three pixel columns on the left eftfacroblock
MB(c,r) after MC. These 720x3x2 + 16x3x2 = 4416eyare the
only pixel data needed for the Deblocking filter MB(c,r). By
using these pixel data as inputs to the Deblockiter, we can
fuse the two loops, and avoid spilling a whole feato the
memory. This optimization is similar to loop tilinghich is
frequently used by optimizing compilers to improgpatial
locality in the cache hierarchy of a processor.

SIMD leve paralldism
M otion Compensation
Motion Compensation is the process of compensdtinghe
movement of rectangular blocks of pixels betweeamfes. The
precision of motion vectors is quarter pixel fomia components

and 1/8 pixel for chroma. As luma and chroma samplesub-
sample positions do not exist, it is necessary dnegate them
from nearby coded samples. Most of the complexitthe MC

module, approximately 40% of the total executionetj is due to
the quarter pixel interpolation.

In AVS, the predictive value at half sample positican be
obtained with horizontal or vertical interpolatiosing the four-
tapping filter F1 (-1, 5, 5, -1) and the predictivedue at quarter
sample position can be obtained with interpolatismg the four-
tapping filter F2 (1, 7, 7, 1). The interpolatioh quarter pixels
requires integer and half sample values (Fig. 8).éxample, the
quarter pixel valuea is given by: a'= ee+ 7D'+7b'+E'and
a=clip((a+64) >>7).

One of the main challenges to SIMD vectorizationthat
motion compensation may require memory loads otipialbytes
from memory positions which are not vector alignethe
Diamond 388VDO pixel processor supports a large erof
unaligned load instructions that can be used fore th
implementation of motion compensation with the esafj TIEs.
For example, the unaligned load instructiod_Ida_16x8 returns
16 bytes, i.e. an entire macroblock row, and bynagsthe
appropriate SIMD TIE instructions, one can calcildite vertical
filter for any block size.

These SIMD optimizations provide a 4.8x speed upth®
interpolation kernel, the function that iteratesan 8x8 pixel
block to compute the interpolated pixels. The eftecthe total
execution time is 1.8x speed up compared to thsiamrwith
Variable Length Decoding (VLD) optimizations (Talbje

Deblocking filter

The deblocking filter is a low pass filter acros$ock
boundaries applied as a last step in the decodebg@fore storing
the reconstructed block of pixels back in the m@iemory. It is
used to smooth block edges to improve the appearahthe
reconstructed frame in image areas with low spdteduency.
Filtering is applied in two steps; first along tmmntal edges and
then across vertical edges of each 8x8 block. #ighows that
only the top rows of the current 8x8 luma block B{cand the
bottom rows of the luma block B(c, r-1) are affelcfeom the
deblocking filter, depending on the value of therxary strength
parameterBs. It can take the value 0 (no filtering), 1 (medium
filtering) and 2 (heavy filtering).

A data parallel implementation of the Deblockinitefi uses the
pixel processor TIEs to implicitly unroll the lo@nd vectorize
the computations of Fig. 5. The pixg, pl, p2, 0, g1, g2 of
Fig. 4 become 8 or 16-pixel vectd?s, P1, P2, Q0, Q1, Q2. The
vectorization has the potential to speed up execuime of the
inner loop by a factor of 8 or 16 provided that tleetors are 8 or
16 bytes aligned, respectively.

In the vectorized version of the code, the parthefcode with
conditional execution semantics are predicated, ttsat an
instruction has effect only if the predicate isetrd’he average
speed up of all the Deblocking filter kernels is38. The
collective effect of SIMD parallelization improvéstal execution
time by an additional 2.26x, for a total speed t1p.67 compared
to the initial OpenAVS code. As before, we assumpedect
memory system with zero-wait cycles.

Task level parallelism

A heterogeneous dual core processor allows simedias
execution of different parts of the AVS decoder osingle or
even for multiple macroblocks. There are two majeps to port
the AVS decoder to a multi-core system. First, ¢hde and the
related data structures should be partitioned aiataged to
corresponding memory spaces. Second, a commumicatio
mechanism must be set up to transfer data betvaeetwb cores.

Functions are dedicated to one core only, and pidt &cross
different cores. Each executable is placed in tvall SRAM of
the corresponding processor. It is important taeeha balanced
load partitioning between the two cores in orderlathieve the
theoretical maximum speed up of 2. In our case, dtieam
processor to pixel processor load ratio was 45%-55%

The multi-channel DMA is used in three differensest

 to transfer the luma and chroma coefficient blomgether
with other control parameters for each macrobladmf
the local SRAM of the stream processor to the |&RAM
of the pixel processor,

» to transfer pixel blocks of previous frames from ima
memory to the local SRAM of the pixel processore3d
blocks are used for interpolation and motion conspéon
in the pixel processor.

» To transfer the final pixel blocks from the loc&AM of the
pixel processor back to the main memory — bothréento
be displayed and in order to be used for motion
compensation during decoding of subsequent frames.

The DMA engine interleaves data transfer and coatprn to
increase system performance. The non-blocking fomality of
the DMA requires that the stream and pixel proassso
synchronize their execution at specific points. TO&IA unit
decouples the execution of the two cores whichstiredule their
data transfer and data receipt at their own paitbput executing
at lock step to each other.

To increase the degree of decoupling, multipledyirffy is used
to allow the two cores to work on macroblock détat tare further
away. Our current implementation uses a two MB layer
between the two cores, which means that the stpgagessor is
processing MB,,, whereas the pixel processor is still at MB
Deeper buffering schemes require a substantialeaser of
internal SRAM requirements.

The dual core mapping resulted in an additionafoperance
improvement of 1.8x, out of the ideal 2x, due te twerhead
associated with the DMA set up, and the load intbzda The
total speed up of almost 5x compared to a softw&@@based
implementation, enables real-time, 25fps decodfrigloframes.

3. References

[1] Jose Lau, “MPEG-4, AVS deliver better video gmession more
flexible format,” Electronic Times Asia, June ¥ 2006.
[2] “Diamond Standard Core Processor Architectuieyisilica White
Paper, July 2007.
[3] http://sour cefor ge.net/projects/openavs
[4] “VDO Instruction Set Architecture (ISA) Extsions Reference
Manual,” July 2007

Instruction RAM
(24 Kbyte)

DataRAM
(40 Kbyte)

JTAG DC_388VD0_0 DC_388VDO0_1

B .-

Pixel Processor
Custom Video Instructions

Stream Processor
Custom Video Instructions

Interry

AVS Decoder Profiling

Motion Comp
i 0
/ 64.4%

Other

Intra
Prediction
Parsing &
Entropy Coding

Inverse Quant

Deblocking

Inverse Transform &

3

Motion Compensation Profiling

Luma,
B picture

Reconstruct
39.8%

28.9%

Chroma,
B picture

Luma,
P picture

ProcessorInterface (PIF)Interconnect

Figure 2: Execution profiling of the software Opafdecoder (a)
Motion Compensation amounts to 64.4% of the tatakation time
(b) Details on the Motion Compensation profiling

. System
" PIFPort

DMAController

DMAPIF
Port

>

Figure 1: Diamond 388VDOVideo Engine Block Diagram

Only pixels p1,p0,q0,q1 .
- Only pixels p0,q0

~ affected when BS=2 affected when BS=1
. S " B E m E mE N

S " m B N B EEBN

I o

= H m E B E mE BN

S | AN B B @ | B I)

s O Horizontal 8x8
) block edge

2 E EE N I I g
. - H m B B BE mE N

L —

Q " m B B B B EBN
O ® @ © O

Figure 3: Interpolation of Luma components

Figure 4: Adjacent pixels for the horizontal deldditter

(BS > 0) && (Ip0 - q0| < a) &&
(Ip1-p0l < B) &&

DEB LOCK (la1 - a0l < B)

(Ip2 - pOf < B)
&&

(Ip0 - 0] < (a>>2) +
2))

TRUE

TRUE ‘P0=(2*p1+p0+q0+2)>>2; ‘

FALSE
PO=(p1+2*p0+q0+2)>> 2

P1=p1 + d5p1
P1=(2%p1+p0+q0+2)>>2;

(92 - pOf < B)
&&

(Ip0 - q0] < (a>> 2) +
2)

Q0=(2*ql+q0+p0+2)>>2 ‘
(2*g1+d0+pl) TRUE

Q1=q1-95qg1 FALSE
Q0= (g1 +2*q0+p0+2)>>2; 4 4

Q1=(2*q1+q0+p0+2)>>2;

»{ RETURN e ——

5= Clip(-C, C, ((q0 - p0)* 3 + (p1-q1) + 4)>> 3)
5p1 = Clip(-C, G, (PO - p1)* 3 + (p2 — QO) + 4) >> 3)
8q1 = Clip(-C, C, ((q1-Q0)*3 + (PO - g2) + 4) >> 3)

Figure 5: The AVS Luma Deblocking Block Diagram.

Table I: Summary performance results for the Diathon
388VDO acceleration. The EquivalentkxFshows the clock
frequency of the Diamond core to decode 25fps &x526 D1
resolution. All the rows except for the last onéerdo a single
core engine.

Optimization Equivalent Speedup
Fax factor
(MH2z)
Baseline OpenAV S code 1730 1
Softwar e Optimizations 1461 1.18
SIMD parall€elization (TIES)
1. Parsing and VLD only 1354 1.28
2. (1) plusMC, Intra
Prediction, inverse Transform 748 231
3. (2) plus Deblocking 649 2.67

Dual Core 359 4.8

